Recognition of a Phase-Sensitivity OTDR Sensing System Based on Morphologic Feature Extraction
نویسندگان
چکیده
This paper proposes a novel feature extraction method for intrusion event recognition within a phase-sensitive optical time-domain reflectometer (Φ-OTDR) sensing system. Feature extraction of time domain signals in these systems is time-consuming and may lead to inaccuracies due to noise disturbances. The recognition accuracy and speed of current systems cannot meet the requirements of Φ-OTDR online vibration monitoring systems. In the method proposed in this paper, the time-space domain signal is used for feature extraction instead of the time domain signal. Feature vectors are obtained from morphologic features of time-space domain signals. A scatter matrix is calculated for the feature selection. Experiments show that the feature extraction method proposed in this paper can greatly improve recognition accuracies, with a lower computation time than traditional methods, i.e., a recognition accuracy of 97.8% can be achieved with a recognition time of below 1 s, making it is very suitable for Φ-OTDR system online vibration monitoring.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملFeature Extraction and Identification in Distributed Optical-Fiber Vibration Sensing System for Oil Pipeline Safety Monitoring
High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field t...
متن کاملA Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition
With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...
متن کاملA Hybrid Approach Based on Higher Order Spectra for Clinical Recognition of Seizure and Epilepsy Using Brain Activity
Introduction: This paper proposes a reliable and efficient technique to recognize different epilepsy states, including healthy, interictal, and ictal states, using Electroencephalogram (EEG) signals. Methods: The proposed approach consists of pre-processing, feature extraction by higher order spectra, feature normalization, feature selection by genetic algorithm and ranking method, and classif...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کامل